Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Res ; 29(1): 231, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609993

RESUMO

BACKGROUND: High-grade serous ovarian carcinoma (HGSOC) is the most aggressive and prevalent subtype of ovarian cancer and accounts for a significant portion of ovarian cancer-related deaths worldwide. Despite advancements in cancer treatment, the overall survival rate for HGSOC patients remains low, thus highlighting the urgent need for a deeper understanding of the molecular mechanisms driving tumorigenesis and for identifying potential therapeutic targets. Whole-exome sequencing (WES) has emerged as a powerful tool for identifying somatic mutations and alterations across the entire exome, thus providing valuable insights into the genetic drivers and molecular pathways underlying cancer development and progression. METHODS: Via the analysis of whole-exome sequencing results of tumor samples from 90 ovarian cancer patients, we compared the mutational landscape of ovarian cancer patients with that of TCGA patients to identify similarities and differences. The sequencing data were subjected to bioinformatics analysis to explore tumor driver genes and their functional roles. Furthermore, we conducted basic medical experiments to validate the results obtained from the bioinformatics analysis. RESULTS: Whole-exome sequencing revealed the mutational profile of HGSOC, including BRCA1, BRCA2 and TP53 mutations. AP3S1 emerged as the most weighted tumor driver gene. Further analysis of AP3S1 mutations and expression demonstrated their associations with patient survival and the tumor immune response. AP3S1 knockdown experiments in ovarian cancer cells demonstrated its regulatory role in tumor cell migration and invasion through the TGF-ß/SMAD pathway. CONCLUSION: This comprehensive analysis of somatic mutations in HGSOC provides insight into potential therapeutic targets and molecular pathways for targeted interventions. AP3S1 was identified as being a key player in tumor immunity and prognosis, thus providing new perspectives for personalized treatment strategies. The findings of this study contribute to the understanding of HGSOC pathogenesis and provide a foundation for improved outcomes in patients with this aggressive disease.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Sequenciamento do Exoma , Neoplasias Ovarianas/genética , Carcinogênese , Biologia Computacional
2.
Life Sci ; 320: 121512, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858312

RESUMO

Endometrial cancer (EC) is a malignant tumor with a high incidence in women, and the survival rate of high-risk patients decreases significantly after disease progression. The regulatory role of long non-coding RNAs (LncRNAs) in tumors has been widely appreciated, but there have been few studies in EC. To investigate the effect of HOXB-AS3 in EC, we used bioinformatics tools for prediction and collected clinical samples to detect the expression of HOXB-AS3. Colony formation assay, MTT assay, flow cytometry and apoptosis assay, and transwell assay were used to verify the role of HOXB-AS3 in EC. HOXB-AS3 was upregulated in EC, promoted the proliferation and invasive ability of EC cells, and inhibited apoptosis. In addition, the ROC curve illustrated its diagnostic value. We explored experiments via lentiviral transduction, FISH, Oil Red O staining, TC and FFA content detection, RNA-pulldown, RIP, and other mechanisms to reveal that HOXB-AS3 can bind to PTBP1 and co-regulate the expression of SREBP1, thereby regulating lipid metabolism in EC cells. To the best of our knowledge, this is the first study on HOXB-AS3 in disorders of lipid metabolism in EC. In addition, we believe HOXB-AS3 has the potential to be a neoplastic marker or a therapeutic target.


Assuntos
Carcinoma Endometrioide , Neoplasias do Endométrio , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Carcinoma Endometrioide/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Endométrio/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Metabolismo dos Lipídeos , MicroRNAs/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
3.
Mol Oncol ; 16(3): 813-829, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33751805

RESUMO

Long noncoding RNAs (lncRNAs) have a profound effect on biological processes in various malignancies. However, few studies have investigated their functions and specific mechanisms in endometrial cancer. In this study, we focused on the role and mechanism of lncRNA-ZXF1 in endometrial cancer. Bioinformatics and in vitro and in vivo experiments were used to explore the expression and function of lncRNA-ZXF1. We found that lncRNA-ZXF1 altered the migration and invasion of endometrioid endometrial cancer (EEC) cells. Furthermore, our results suggest that lncRNA-ZXF1 regulates EEC cell proliferation. This regulation may be achieved by the lncRNA-ZXF1-mediated alteration in the expression of P21 through two mechanisms. One is that lncRNA-ZXF1 functions as a molecular sponge of miR-378a-3p to regulate PCDHA3 expression and then modulate the expression of P21. The other is that lncRNA-ZXF1 inhibits CDC20-mediated degradation of ubiquitination by directly binding to P21. To the best of our knowledge, this study is the first to explore lncRNA-ZXF1 functioning as a tumor-suppressing lncRNA in EEC. LncRNA-ZXF1 may become therapeutic, diagnostic, and prognostic indicator in the future.


Assuntos
Neoplasias do Endométrio , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias do Endométrio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitinação/genética
4.
Biochem Biophys Res Commun ; 548: 148-154, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33640608

RESUMO

Endocrine therapy is a promising treatment for endometrial cancer (EC) that preserves fertility, however, progesterone-resistance is currently the major challenges. The Cancer Genome Atlas (TCGA) database analysis showed that CNR1 was closely have a negative correlation with overall survival (OS) and relapse-free survival (RFS) in endometrial cancer. To explore the role of CNR1 in progesterone resistance and possible molecular regulation mechanism, we established stable progesterone-resistant cell lines (IshikawaPR) via progesterone tolerance of ordinary cancer cells (Ishikawa). The difference of CNR1 level in two cell lines was assessed by MTT, RT-PCR, Western blot, immunofluorescence. Then, lentiviruses constructed CNR1-knockdown with GV248 as the tool vector were used to transfect IshikwaPR cells, and the changes of biological behavior and progesterone sensitivity was verified respectively through plate cloning experiment, EdU assay, flow cytometry cycle analysis, transwell, Scratch test, etc. We founded after CNR1 was knocked down, the proliferative activity and ability to migrate of IshikawaPR cells decreased, progesterone-response sensitivity could be improved. Moreover, knockdown of CNR1 can also down-regulate ERK and NFκ B expression and activation. Furthermore, subcutaneous xenograft in nude mice was tested similarly in vivo. The above datas suggest that targeting CNR1 may reverse the progesterone resistance in endometrial cancer and may coordinate the role of ERK pathway activation.


Assuntos
Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Endométrio/anormalidades , Sistema de Sinalização das MAP Quinases , Receptor CB1 de Canabinoide/metabolismo , Doenças Uterinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias do Endométrio/genética , Endométrio/metabolismo , Endométrio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Medroxiprogesterona/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptor CB1 de Canabinoide/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Doenças Uterinas/genética , Doenças Uterinas/patologia
5.
Cancer Med ; 8(9): 4380-4388, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31215145

RESUMO

Progestin resistance limits the effectiveness of progestin therapy in endometrial carcinoma for patients who desire to preserve fertility. To investigate the molecular mechanism of progestin resistance in endometrial carcinoma, we performed microarray analysis among Ishikawa and progestin resistant cell IshikawaPR cells. We found that epithelial to mesenchymal transition (EMT) was involved in progestin resistance and dachshund family transcription factor 1 (DACH1) is positively correlated with progesterone receptor (PGR). Knockdown of DACH1 in Ishikawa cell promoted proliferation, metastasis ability, and resistance to progestin. Conversely, overexpression of DACH1 in IshikawaPR cell rendered more sensitive to progestin treatment. Xenograft model assay also had similar results. In addition, our data showed that DACH1 overexpression inhibited EMT and decreased c-Jun, Notch1 and Hes1expression. Our study demonstrated for the first time that EMT is involved in progestin resistance of EC. The response to progestin could be reserved by DACH1 suppressed EMT through Notch1 pathway via c-Jun.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Proteínas do Olho/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Progestinas/administração & dosagem , Progestinas/farmacologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptor Notch1/metabolismo , Receptores de Progesterona/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Transl Med ; 17(1): 58, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30813939

RESUMO

BACKGROUND: Progesterone resistance is a problem in endometrial carcinoma, and its underlying molecular mechanisms remain poorly understood. The aim of this study was to elucidate the molecular mechanisms of progesterone resistance and to identify the key genes and pathways mediating progesterone resistance in endometrial cancer using bioinformatics analysis. METHODS: We developed a stable MPA (medroxyprogesterone acetate)-resistant endometrial cancer cell subline named IshikawaPR. Microarray analysis was used to identify differentially expressed genes (DEGs) from triplicate samples of Ishikawa and IshikawaPR cells. PANTHER, DAVID and Metascape were used to perform gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and cBioPortal for progesterone receptor (PGR) coexpression analysis. GEO microarray (GSE17025) was utilized for validation. The protein-protein interaction network (PPI) and modular analyses were performed using Metascape and Cytoscape. Further validation were performed by real-time polymerase chain reaction (RT-PCR). RESULTS: In total, 821 DEGs were found and further analyzed by GO, KEGG pathway enrichment and PPI analyses. We found that lipid metabolism, immune system and inflammation, extracellular environment-related processes and pathways accounted for a significant portion of the enriched terms. PGR coexpression analysis revealed 7 PGR coexpressed genes (ANO1, SOX17, CGNL1, DACH1, RUNDC3B, SH3YL1 and CRISPLD1) that were also dramatically changed in IshikawaPR cells. Kaplan-Meier survival statistics revealed clinical significance for 4 out of 7 target genes. Furthermore, 8 hub genes and 4 molecular complex detections (MCODEs) were identified. CONCLUSIONS: Using microarray and bioinformatics analyses, we identified DEGs and determined a comprehensive gene network of progesterone resistance. We offered several possible mechanisms of progesterone resistance and identified therapeutic and prognostic targets of progesterone resistance in endometrial cancer.


Assuntos
Biologia Computacional/métodos , Neoplasias do Endométrio/genética , Endométrio/anormalidades , Doenças Uterinas/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Mapas de Interação de Proteínas/genética , Receptores de Progesterona/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...